Моделирование цепей постоянного тока

I. Собрать цепь постоянного тока для снятия вольт-амперной характеристики (ВАХ)

Рис. І.1. Цепь постоянного тока

Настройка блока «Источник напряжения» (из вкладки ЭЦ – Динамика)

войства Общие Порты Визуальные слои	и	
азвание	Имя Форму.	ла Значение
Амплитуда, В	Um	0
Постоянная составляющая, В	Udc	0
Частота, Гц	f	0
Фаза, эл.гр.	fi	0
Сопротивление источника		
Вид цепи сопротивления источника	TypeOfCircuit	R
Индуктивность, Гн	L	0.01
Активное сопротивление, Ом	R	1
☐ Дополнительные параметры		
Имя на схеме	sc_name	010 B
Внешний сигнал	U_in	⊿да

Рис. I.2. Настройка блока источник напряжения

Настройка блока «Линейный источник»: Свободный член a = 0; Коэффициент при t b = 10.

Заданные параметры проекта:	
Конечное время расчета	1 c;
Минимальный шаг	0.2

Рис. І.З. Вход-выход цепи постоянного тока

Таким образом, на левом рисунке временной график линейного источника (вход в систему), на правом – вольт-амперная характеристика (выход). Можно сделать вывод о линейности ВАХ.

II. Снятие нагрузочной прямой Uн(Iн) и зависимости мощности Pн(Iн) на сопротивление нагрузки Rн от тока Iн.

Собрать цепь, выбрав специализированные блоки из библиотеки ЭЦ – Динамика. Блок «Обобщенная цепь» из закладки Элементы для разработчика (в палитре **R-L-C**

который используется в качестве переменного сопротивления нагрузки Rн

Рис. П.1. Цепь постоянного тока для снятия нагрузочной функции

Свойства блока «Обобщенная сеть» представлены на рисунке

🧐 Свойства : RLC1				×
Свойства Параметры Общие Порты Визуальны	ые слои	1		
Название	Имя	Формула	Значение	
Тип элемента цепи	el_type		R	
Сопротивление элемента, Ом	R		[1000]	
Сопротивление шунта, Ом	R_sh		[1000000]	
Сопротивление конденсатора, Ом	R_c		[1E-6]	
Мнимое сопротивление, Ом	R_im		[0]	
Индуктивность, Гн	L		[0.001]	
Ёмкость, Φ	С		[1E-6]	
Источник тока, А	Isrc		[0]	
Мнимый источник тока, А	Isrc_im		[0]	
Напряжение	U		[0]	
Мнимое напряжение, В	U_im		[0]	
Начальный ток индуктивности, А	IL_0		[0]	
Начальное напряжение конденсатора, В	UC_0		[0]	
Параметры задаваемые из портов	in_ports		Сопротивление;	
Параметры выводимые в порты	out_ports		Ток; Напряжение;	
3 ka 🛍 🔍 👺 A 🚟 🖳 🕑 📌 🖪				

Рис. II.2. Свойства блока «Обобщенная сеть»

Свойства блока «Кусочно-постоянная» из библиотеки «Источники» (формирует многоступенчатый выходной сигнал) представлены на рисунке

🏟 Свойства: PolyStep_source10						
Свойства	Общие	Порты	Визуаль	ные слои		
Название				Имя	Формула	Значение
Массив вр	ременны	(интерв	алов	t		[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
Массив зн	начений			у		[[0.1,25,50,100,200,400,500,600,700,1000]]

Рис. II.3. Свойства блока «Кусочно-постоянная»

На рисунке II.4 представлены результаты моделирования при параметрах расчета:

Минимальный (максимальный) шаг 0.001

Конечное время расчета 10

Рис. II.4. Результаты моделирования

Моделирование цепей переменного тока

I. Собрать динамическую модель инерционного звена 1-го порядка, при подаче на вход гармонического сигнала

Рис. І.1. Модель инерционного звена 1-го порядка

Настройка блока «Источник напряжения» (из вкладки ЭЦ – Динамика)

🍻 Свойства	a: ac_U1	I				
Свойства (Общие	Порты	Визуал	ьные слои		
Название				Имя	Формула	Значение
Амплиту	уда, В			Um		100
Постоян	ная сос	тавляюц	цая, В	Udc		0
Частота	, Гц			f		50
Фаза, э	л.гр.			fi		0
🖻 Сопроти	ивление	источни	ка			
Вид เ	цепи сог	противле	ения	TypeOfCircuit		R
- Инду	ктивнос	ть, Гн		L		0.1
Акти	вное со	противл	ение,	R		0.01
🗄 Дополні	ительнь	іе парам	етры			

Рис. І.2. Настройка блока источник напряжения

иараметры проекта: E:\Document-20230801\A1-IVIOdCистему правления-2024(240703)\Лаоор.	аткаооты(240801)\Lvv4-240807.рп слои	: Автоматика	
Параметры расчёта Управление расчётом Настройки проекта			
Название	Имя	Формула	Значение
Основные параметры			
Минимальный шаг	hmin		0.0001
— Максимальный шаг	hmax		0.0001
·····Шаг синхронизации задачи в пакете	synstep		0
- Режим параллельного выполнения в пакете	serial_mode		Параллельный
— Начальный шаг интегрирования (если 0 - выбирается автоматически)	startstep		0
— Метод интегрирования	intmet		Эйлера
— Начальное время расчёта	starttime		0
— Конечное время расчёта	endtime		0.06
— Относительная ошибка	relerr		0.0001
— Абсолютная ошибка	abserr		1E-10
— Относительная ошибка сравнения времени для дискретных блоков и источников	time_rel_error		1E-12
Начальное значение неинициализированных выходов блоков	InitOutputsValue		0
🗄 Генерация кода			
Э. Управление расчётом			
⊞- Настройки решения НАУ			
🗄 Визуализация данных			
🗄 Удалённая отладка кода			
🖅 Сортировка блоков			
🕮 – Тонкие настройки решения СЛАУ			
🕮 Тонкие настройки решения НАУ			
🗵 Электрические схемы			

Рис. І.З. Параметры расчета

Рис. І.4. Результат моделирования

Из анализа результатов (рис.I.4) следует, что напряжение на сопротивлении V3 опережает напряжение на емкости V1 на 90° .

II. Динамическая модель инерционного звена 1-го порядка.

Рассмотрим модель инерционного звена при подаче на вход гармонического сигнала. Анализу подлежит динамика полной и активной мощности.

Рис. II.1. Модель задания

🦃 Свойства: rms1							
Свойства	Параметры	Общие	Порты	Визуалы	ные слои		
Название			Имя		Формула	Значение	
Число кан	алов		m			1	
Шаг дискретизации, с			dist			0.0006	
Способ вычисления rms			mod	le		Истинное	
Период, с		т			0.02		
Число гармоник		Ng			1		
Частота 1-й гармоники, Гц		f1			50		
Учитыват	ь постоянную	составл	A0			□нет	

Рис. II.2. Настройка блока rms – среднеквадратичное значение за период *)

焥 Свойсті	ва: TAVG	i1				
Свойства	Общие	Порты	Визуальные слои			
Название			Имя	Формула	Значение	
Период, с	:		т		0.02	
Шаг диск	ретизаци	іи, с	dist		0.001	
Число кан	налов		m		1	

Рис. II.3. Настройка блока avg – среднее значение за период *)

^{*)} - Закладка «Элементы управления и обработки сигналов» библиотеки «ЭЦ-Динамика»

раметры расчёта Управление расчётом Настройки проекта			
азвание	Имя	Формула	Значение
Основные параметры			
— Минимальный шаг	hmin		0.0001
— Максимальный шаг	hmax		0.0001
— Шаг синхронизации задачи в пакете	synstep		0
- Режим параллельного выполнения в пакете	serial_mode		Параллельный
Начальный шаг интегрирования (если 0 - выбирается автоматически)	startstep		0
— Метод интегрирования	intmet		Эйлера
Начальное время расчёта	starttime		0
Конечное время расчёта	endtime		0.06
Относительная ошибка	relerr		0.0001
- Абсолютная ошибка	abserr		1E-10
Относительная ошибка сравнения времени для дискретных блоков и источников	time_rel_error		1E-12
Начальное значение неинициализированных выходов блоков	InitOutputsValue		0
Генерация кода			
Управление расчётом			
Настройки решения НАУ			
⊢ Визуализация данных			
— Удалённая отладка кода			
- Сортировка блоков			
— Тонкие настройки решения СЛАУ			
⊢ Тонкие настройки решения НАУ			
Электрические схемы			

Рис. II.5. Результаты моделирования

Результаты моделирования позволяют исследовать динамику полной и активной мощности инерциального звена.

III. Цепь гармонического тока с использованием блоков из библиотеки «ЭЦ – Статика»

Собрать цепь, выбрав специализированные блоки из библиотеки ЭЦ – Статика.

Рис. III.1. Цепь гармонического тока

Свойства блока «Параметры контура» из вкладки «Элементы топологии» представлены на рисунке III.2.

Название	Имя	Формула	Значение
Метод расчета	method		В комплексных числа
Базовый метод расчёта	top_method	[1]	[1]
Метод интегрирования	int_method		Неявный трапеций;
Способ расчёта начального сос	init_mode		Заданные н.у.;
Номинальная частота контура, Гц	f_nom		[5000]
Максимальное к-во итераций к	iter_count		5
Выполнять также на предварит	execallsteps		⊿да
Параметры задаваемые из пор	in_ports		
Включить отладочную печать	enable_debug_print		Пнет
Зключить отладочную печать	enable_debug_print		Нет

Рис. III.2. Свойства блока «Параметры контура»

ойства	Параметры	Общие	Порты	Визуальные сло	и	
азвание			Имя		Формула	Значение
Напряж	кение (rms), E	В	Urm	s		10
Частот	а, Гц		f			5000
Угол, э	л.гр.		fi			0
Действ	зительная сос	тавляю	. Ure			10
мнима	я составляюц	цая напр.	Uim			0
Сопрот	ивление исто	чника				
— <mark>Вид</mark>	цепи сопроти	вления.	Туре	ofCircuit		нет
Инд	уктивность, Г	н	L			0.001
Акти	ивное сопроти	ивление,.	R			1
∃ Дополн	ительные					
Зад	ать напряжен	ие чере.	U_in			□нет
Зад	ать частоту че	ерез порт	т F_in			□нет
Цве	т		obj_	color1		8388736
шри	ιфт		obj_	font		Cambria
мет	од расчета		met	hod		В комплексных числах
Мод	цель rms		rms	_	[1]	[1]

Рис. III.3. Свойства блока «Источник напряжения»

ойства Параметры Общие П	орты Визуальные слои			
звание	Имя	Формула	Значение	
Вид цепи	Туре		L	
Сопротивление, Ом	R_		[1]	
Тип элемента цепи	el_type		RL	
Сопротивление шунта, Ом	R_sh	self.R_	[1]	
Сопротивление конденсатор	R_c		[0]	
Мнимое сопротивление, Ом	R_im		[0]	
Индуктивность, Гн	L		[0.003]	
Ёмкость, Φ	С		[1]	
Источник тока, А	Isrc		[0]	
Мнимый источник тока, А	Isrc_im		[0]	
Напряжение	U		[0]	
Мнимое напряжение, В	U_im		[0]	
Начальный ток индуктивнос	IL_0		[0]	
Начальное напряжение кон	UC_0		[0]	
Параметры задаваемые из п	in_ports			
Дополнительные				
Kr	Kr		0	

Рис. III.4. Настройка блока «RLC-цепь» (L) вкладки «Электротехнические элементы» библиотеки ЭЦ - Статика

Параметры расчета:	
минимальный (максимальный) шаг	0.001
конечное время расчета	0.1

После запуска схемы на моделирование приходим к результатам моделирования. Результаты моделированияв виде токов в ветвях контролируются в окнах «Свойства» на закладке «Параметры»:

🧐 Свойства: Z1						—	×		
Свойства	Параметры	Общие	Порты	Визуальные	слои				
Название				Имя	Зна	чение			
Ток комплексный (rms), А			I_out	0.0	2112682031-0).1500589063i			
Ток (rms/	/inst), A			I_rms	0.1	51538833			

🧀 Свойства: Z2									—		×
Свойства	Параметры	Общие	Порты	Визуальные	слои						
Название				Имя	Зна	чение					
Ток комплексный (rms), А			I_out	-0.	-0.04142718729-0.01991155904i						
Ток (rms/inst), А				I_rms	0.0	.04596392097					

🔊 Свойства: Z3								—	×		
Свойства	Параметры	Общие	Порты	Визуальные	е слои						
Название				Имя	Зна	чение					
Ток комплексный (rms), А			I_out	0.0	62554007	6-0.13	0147342	73i			
Ток (rms/	'inst), A			I_rms	0.1	44399916	4				

Рис. III.5. Результаты моделирования