4. Типовые (элементарные) звенья (усилительное, дифференцирующее, интегрирующее, апериодическое и т.д.)

Обычно система управления состоит из отдельных блоков, каждый из которых описывается уравнениями низкого порядка (чаще всего – первого или второго). Для понимания работы системы в целом желательно хорошо представлять, как ведут себя ее отдельные элементы. Динамические характеристики показывают изменение выходных параметров во времени -Динамические характеристики зависят от воздействия. Рабочее управления воздействие определяется программой (регулирования). Воздействие, эксплуатацией, связанное называется возмущающим воздействием. Динамические характеристики могут быть временные и частотные. Для того чтобы получить реакцию системы, необходимо задать внешнее управляющее воздействие.

Понятие "типовые звенья" в теории управления техническими системами, в основном, связано с описанием САУ (САР) в переменных "вход – выход", т.е. описание систем в передаточных функциях. Достигнуто общепринятое соглашение, что наиболее удобно расчленять структурную схему САУ (САР) на звенья 1-го и 2-го порядков. Принято называть такие простейшие звенья типовыми.

Любую линейную САУ (САР) или линеаризованную САР можно структурно расчленить на простейшие элементы (звенья), соединенные между собой соответствующими последовательными, параллельными связями, местными и локальными обратными связями, сумматорами, сравнивающими устройствами и т.д.

4.1. Основные определения

Переходной [h(t)] называется функция, определяющая изменение выходной величины при скачкообразном изменении входной величины на единицу [1(t)] при нулевых начальных условиях.

$$1(t) = \begin{cases} 1 & \text{при } t => 0 \\ 0 & \text{при } t < 0 \end{cases}$$

Если передаточная функция $W(s)=\frac{N(s)}{L(s)}$, причем уравнение L(s)=0 не имеет кратных корней, то переходная функция $h(t)=\frac{N(0)}{L(0)}+\sum_{1}^{n}\frac{N(s_{i})}{s_{i}L'(s_{i})}\,e^{s_{i}t},$ где $L'(s_{i})=\frac{dL(s)}{s}\mid_{s=s_{i}},\ s_{i}$ - корни характеристического уравнения L (s)=0.

Импульсной (импульсная переходная; функция веса) [w(t)] называется функция, определяющая изменение выходной величины при приложении на входе единичного импульса [дельта функции $\delta(t)$] и при нулевых начальных условиях.

$$\delta(t) = \begin{cases} \infty & \text{при } t = 0 \\ 0 & \text{при } t > < 0 \end{cases}; \quad \delta(t) = \frac{d1(t)}{dt}; \quad \int_{-\infty}^{\infty} \delta(t) dt = 1.$$

Весовая функция w(t) (так же как и переходная) может быть определена при известной передаточной функции звена $W(s) = \frac{N(s)}{L(s)}$ с помощью формулы Хевисайда:

$$w(t) = \sum_{1}^{n} \frac{N(s_i)}{L'(s_i)} e^{s_i t},$$
 поскольку $\delta(t) = \frac{d1(t)}{dt}; \quad w(t) = \frac{dh(t)}{dt}; \quad h(t) = \int_{0}^{\infty} w(t) dt.$

Передаточная функция динамического звена есть изображение Лапласа его весовой функции $W(s) = L\{w(t)\}$

Частотной (амплитудно-фазовой) $W(i\cdot\omega)$ называется функция, определяющая изменение амплитуды и фазы выходной величины в установившемся режиме при приложении на входе гармонического воздействия.

Передаточной [W(s)] функцией называют отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при нулевых начальных условиях.

Взаимосвязь функций

$$h(t) = \int_0^t w(\tau) d\tau = L^{-1} \Big[\frac{W(s)}{s} \Big];$$

$$w(t) = \frac{dh(t)}{dt} = L^{-1} [W(s)];$$

$$W(i \cdot \omega) = i \cdot \omega \cdot F[h(t)] = F[w(t)] = W(s)|_{s=i \cdot \omega};$$

$$W(s) = s \cdot L[h(t)] = L[w(t)] = W(i \cdot \omega)|_{i \cdot \omega = s},$$
 где L и L⁻¹ - символы прямого и обратного преобразования Лапласа:
$$L(f(t)) = \int_0^\infty f(t) e^{-st} dt.$$

$$L\{f(t)\} = \int_0^\infty f(t)e^{-st}dt;$$

$$L^{-1}\{f(s)\} = f(t) = \frac{1}{2\pi i} \int_{\sigma-i\cdot\omega}^{\sigma+i\cdot\omega} f(s)e^{st}ds,$$

 σ_0 – абсцисса абсолютной сходимости функции.

F и F⁻¹ - символы прямого и обратного преобразования Фурье:

$$\begin{split} F\{f(t)\} &= f(i\cdot\omega) = \int_0^\infty f(t)e^{-i\omega t}dt; \\ F^{-1}\{f(i\cdot\omega)\} &= f(t) = \frac{1}{2\pi}\int_{-\infty}^\infty f(i\cdot\omega)\,e^{-i\cdot\omega \cdot t}d\omega, \end{split}$$

Определение выходной величины y(t) может осуществляться по известным входной величине x(t) и:

• Переходной функции h(t):

$$y(t) = x(t)h(0) + \int_{t_0}^{t} h(t-\tau)(t)d\tau =$$

$$= x(t)h(0) + \int_{t_0}^t h(\tau)x'(t-\tau)d\tau$$

• Импульсной (весовую) функции w(t):

$$y(t) = \int_0^t x(t-\tau)w(t)d\tau = \int_0^t w(t-\tau)x(\tau)d\tau$$

• Передаточной функции W(s):

$$y(t) = L^{-1}[Y(s)] = L^{-1}[X(s) \cdot W(s)]$$

4.2. Типовые динамические звенья

Обычно система управления состоит из отдельных блоков, каждый из которых описывается уравнениями низкого порядка (чаще всего – первого или второго). Передаточную функцию разбивают на простейшие сомножители

$$W(s) = W_1(s) * W_2(s) * ... W_n(s)$$

Учитывая, что передаточная функция линейного (линеаризованного) звена может быть записана как:

$$W(s) = \frac{K \cdot N(s)}{L(s)}$$

где: N(s) и L(s) - полиномы по степеням s, причем коэффициенты при низшей степени s в полиномах N(s), L(s) равны 1, классификацию на типы звеньев можно объяснить видом полиномов или (что эквивалентно) видом коэффициентов в соответствующих уравнениях динамики звена.

В первом приближении различают 3 типа звеньев:

1. Позиционные, например $W(s) = \frac{s^2 + 3 \cdot s^1 + 1}{2 \cdot s^3 + 5 \cdot s^2 + s^1 + 1}$. В уравнениях динамики (x(t) - входной сигнал, y(t) - выходной):

$$2 \cdot y'''(t) + 5 \cdot y'' + y'(t) + y(t) = x''(t) + 3 \cdot x'(t) + x(t)$$

Из типовых звеньев (1-го и 2-го порядка) к позиционным звеньям относятся: идеальное усилительное звено, апериодические звенья 1-го и 2-го порядка, колебательное звено и форсирующее звено.

2. Дифференцирующие, например $W(s) = \frac{s^2 + 3 \cdot s^1}{2 \cdot s^3 + 5 \cdot s^2 + s^1 + 1}$. В уравнениях динамики:

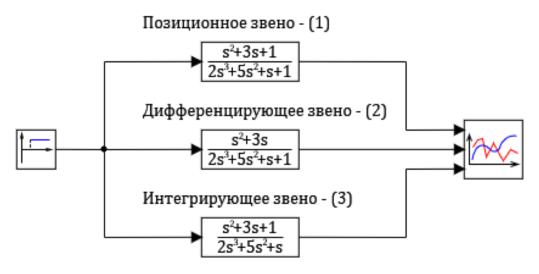
$$2 \cdot y'''(t) + 5 \cdot y'' + y'(t) + y(t) = x''(t) + 3 \cdot x'(t)$$

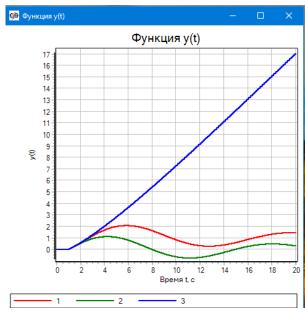
Из типовых звеньев к дифференцирующим звеньям относятся идеальное дифференцирующее звено, инерционно-дифференцирующее звено.

3. Интегрирующие, например $W(s) = \frac{s^2 + 3 \cdot s^4 + 1}{2 \cdot s^3 + 5 \cdot s^2 + s^4}$, или в уравнении динамики: $2 \cdot y'''(t) + 5 \cdot y'' + y'(t) = x''(t) + 3 \cdot x'(t) + x(t)$

Из типовых звеньев к интегрирующим звеньям относятся идеальное интегрирующее звено, инерционно-интегрирующее звено.

Пример переходного процесса при единичном ступенчатом воздействии на три разных узла —





4.2.1. Усилитель

Уравнение динамики звена имеет вид:

$$y(t) = K \cdot x(t), \tag{4.1}$$

т.е. уравнение не является дифференциальным, следовательно, данное звено является безынерционным.

Переходя к изображениям x(t) -> X(s); y(t) -> Y(s), получаем:

 $Y(s) = K \cdot X(s)$ — уравнение динамики звена в изображениях.

Передаточная функция идеального усилительного звена:

$$W(s) = \frac{Y(s)}{X(s)} = K.$$

 $A\Phi \Psi X$ не зависит от ω -

$$W(iw) = W(s)|_{s=i\omega} = K.$$

Звенья, имеющие $W(s) = K \neq 0$ называются позиционными. При действии на вход единичного ступенчатого сигнала l(t) на выходе будет такой же сигнал, усиленный в K раз.

Весовая функция:

$$w(t) = L^{-1} \cdot [W(s)] = L^{-1} \cdot [K] = K \cdot L^{-1}[1] = K \cdot \delta(t)$$

Переходная и импульсная характеристика звена –

$$h(t) = K$$
 $(t > 0)$; $w(t) = K*\delta(t)$; $W(s) = K$.

Если на вход усилителя действует синусоидальный сигнал, на выходе он усиливается в K раз без изменения фазы, поэтому амплитудная и фазовая частотная характеристики не зависят от частоты входного сигнала: $A(\omega) = K$, $\phi(\omega) = 0$.

$$W(i \cdot \omega) = W(s) = K$$

Годограф АФЧХ вырождается в точку:

- вещественная частотная характеристика $U(\omega) = Re(\omega) = K$;
- мнимая частотная характеристика $V(\omega) = Im(\omega) = 0$.

$$A(\omega) = \text{mod } W(i \cdot \omega) = |W(i \cdot \omega)| = K$$

Характеристики звена Усилитель $y(t) = K \cdot x(t)$:

Передаточная функция W(s) = K.

Весовая функция: $w(t) = K \cdot \delta(t)$

Переходная и импульсная характеристика звена:

$$h(t) = K$$
; $w(t) = K*\delta(t)$; $W(s) = K$.

Амплитудная и фазовая частотная характеристики: $A(\omega) = K$, $\phi(\omega) = 0$.

Примерами звена являются:

- Механический редуктор (Представление редуктора пропорциональным звеном всегда является идеализированным, т.к. не учитывается упругие деформации валов и шестерен (они предполагаются абсолютно жесткими), а также зазоры в зубчатых передачах);
- Безынерционный (широкополосный) электронный усилитель (Представление усилителя пропорциональным звеном всегда является идеализированным. Реальный усилитель не может пропускать сигналы всех частот одинаково, с увеличением частоты входного напряжения коэффициент усиления реального усилителя будет уменьшаться, однако в широкой полосе частот это уменьшение незначительно и его можно не учитывать);
 - делитель напряжения и т.д.

B SimInTech звено W(s) = K реализуется с помощью элемента «Усилитель» библиотеки «Операторы» раздела SimInTech. Коэффициент усиления задаётся свойством усилителя.

4.2.2. Дифференцирующие звенья

Дифференцирующее звено дает на выходе производную входного сигнала. Уравнение идеального дифференцирующего звена

$$y(t) = k*dx(t)/dt,$$
 (4.2.1)

его операторная запись $y(t) = k \cdot p x(t)$, а передаточная функция $W(s) = k \cdot s$.

Известно, что производная единичного ступенчатого сигнала 1(t) в точке t=0 — это дельта-функция $\delta(t)$. Поэтому переходная и весовая функции дифференцирующего звена

$$h(t) = k*\delta(t)$$
, $w(t) = k*d\delta/dt$.

Это физически нереализуемые функции, так как дельта-функцию и ее производную, имеющие бесконечные значения, невозможно получить на реальном устройстве. Поэтому идеальное дифференцирующее относится к физически нереализуемым звеньям.

В технике не могут использоваться физически нереализуемые звенья. Поэтому важно рассмотреть аналогичное звено, которое выполняет дифференцирования низкочастотных сигналов и одновременно имеет ограниченное усиление на высоких частотах. Инерционное дифференцирующее звено описывается уравнением

$$T\frac{dy(t)}{dt} + y(t) = k * \frac{dx(t)}{dt}$$

и имеет передаточную функцию W(s) = k*s / (Ts+1). Фактически это последовательное соединение идеального дифференцирующего и апериодического звеньев.

Апериодическое звено добавляет инерционность: обладая свойствами фильтра низких частот, оно ограничивает усиление на высоких частотах. Поскольку передаточная функция имеет равные степени числителя и знаменателя, на высоких частотах (выше сопрягающей частоты $\omega = 1/T$) ЛАЧХ имеет нулевой наклон, поэтому неограниченного роста коэффициента усиления не происходит.

4.2.2.1. Идеальное дифференцирующее звено

Уравнение динамики звена имеет вид:

$$y(x) = K \cdot \tau \cdot x'(t), \qquad (4.2.2)$$

где: τ – постоянная времени.

Переходя к изображениям $x(t) -> X(s); \quad x\dot{\ }(t) -> s\cdot X(s); \quad y(t) -> Y(s),$ получаем уравнение динамики звена в изображениях:

$$Y(s) = K \cdot \tau \cdot s \cdot X(s)$$

Передаточная функция идеального дифференцирующего звена:

$$W(s) = \frac{Y(s)}{X(s)} = K \cdot \tau \cdot s = i \cdot K \cdot \tau \cdot \omega$$

АФЧХ – Амплитудно-фазовая частотная характеристика

$$W(i \cdot \omega) = i \cdot K \cdot \tau \cdot \omega;$$

$$Re \quad (\omega) = U(\omega) = 0;$$

$$Im \quad (\omega) = V(\omega) = K \cdot \tau \cdot \omega;$$

$$A(\omega) = \sqrt{Re^{2}(\omega) + Im^{2}(\omega)} = K \cdot \tau \cdot \omega;$$

$$\varphi(\omega) = arctg \frac{Im(\omega)}{Re(\omega)} = \frac{\pi}{2}$$

Логарифмическая амплитудная характеристика ЛАХ:

$$Lm(\omega) = 20 \cdot \lg(A(\omega)) = 20 \cdot \lg(K \cdot \tau) + 20 \cdot \lg(\omega)$$

Весовая функция звена:

$$w(t) = L^{-1}[W(s)] = L^{-1}[K \cdot \tau \cdot s \cdot \omega]$$

$$w(t) = K \cdot \tau \cdot \delta'(t)$$

Переходная функция звена:

$$h(t) = L^{-1}[H(s)] = L^{-1} \left[\frac{W(s)}{s} \right] = L^{-1} \left[\frac{K \cdot \tau \cdot s}{s} \cdot [1] \right]$$
$$h(t) = K \cdot \tau \cdot \delta \quad (t)$$

Звено обеспечивает опережение по фазе на $\pi/2$ (при любой частоте входного сигнала). Чем выше частота единичного гармонического сигнала на входе в звено, тем выше амплитуда выходного сигнала в установившемся режиме.

Характеристики дифференцирующего звена $y(x) = K \cdot \tau \cdot x'(t)$:

Передаточная функция $W(s) = K \cdot \tau \cdot s$.

Весовая функция: $w(t) = K \cdot \tau \cdot \delta'(t)$

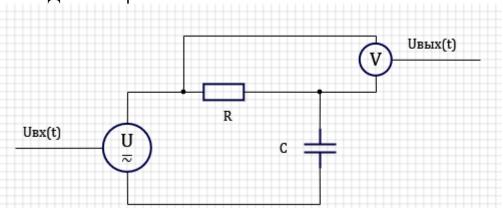
Переходная функция звена: $h(t) = K \cdot \tau \cdot \delta$ (t)

Амплитудная и фазовая частотная характеристики:

$$A(\omega) = K \cdot \tau \cdot \omega; \ \varphi(\omega) = \frac{\pi}{2}$$

4.2.2.2. Инерционно-дифференцирующее звено

Для электрической схемы -



$$\begin{split} &U_{\text{BX}} = U_{\text{R}} + U_{\text{C}}, \quad I = dq / dt, \quad q_{\text{c}} = C^* U_{\text{c}} \\ &U_{\text{BX}} = U_{\text{R}} + U_{\text{C}} = I^* R + U_{\text{BX}} - U_{\text{R}} = dq / dt * R + U_{\text{BX}} - U_{\text{R}} \\ &0 = dq / dt * R - U_{\text{R}} \\ &C^* R^* dU_{\text{c}} / dt - U_{\text{R}} = C^* R^* d(U_{\text{BX}} - U_{\text{R}}) / dt - U_{\text{R}} \end{split}$$

$$C*R*dU_{BX}/dt - C*R*dU_{R}/dt - U_{R}$$
 \rightarrow $C*R*dU_{R}/dt + U_{R} = C*R*dU_{BX}/dt$ или

$$C*R*y'(t) + y(t) = C*R*x(t) \{ C*R -> \tau \}$$

Уравнение динамики инерционно-дифференцирующего звена имеет вид:

$$T*y'(t) + y(t) = \tau*x'(t)$$
 или обычно записывают $T*y'(t) + y(t) = k*x'(t)$

В изображениях Лапласа

$$(T \cdot s + 1) \cdot Y(s) = \tau \cdot s \cdot X(s).$$

Передаточная функция

$$W(s) = \frac{Y(s)}{X(s)} = \frac{\tau \cdot s}{T \cdot s + 1}$$

АФЧХ (s ->
$$i \cdot \omega$$
)
$$W(i \cdot \omega) = \frac{\tau \cdot i \cdot \omega}{\tau \cdot i \cdot \omega + 1} = \frac{\tau \cdot T \cdot \omega^2}{1 + T^2 \cdot \omega^2} + i \cdot \frac{\tau \cdot \omega}{1 + T^2 \cdot \omega^2};$$

$$U(\omega) = \frac{\tau \cdot T \cdot \omega^2}{1 + T^2 \cdot \omega^2} \qquad V(\omega) = \frac{\tau \cdot \omega}{1 + T^2 \cdot \omega^2}$$

Модуль АФЧХ
$$A(\omega) = \sqrt{U(\omega)^2 + V(\omega)^2} = \frac{\tau \cdot \omega}{\sqrt{1 + T^2 \cdot \omega}}$$

Сдвиг фазы
$$\varphi(\omega) = \operatorname{arctg} \frac{V(\omega)}{U(\omega)} = \operatorname{arctg} \frac{1}{T \cdot \omega} = \operatorname{arcctg}(T \cdot \omega)$$

Логарифмическая амплитудная характеристика ЛАХ определяется по формуле

$$Lm(\omega) = 20 \cdot \lg(\tau \cdot \omega) - 20 \cdot \lg\sqrt{1 + T^2 \cdot \omega^2}$$

4.2.3. Идеальное интегрирующее звено

Интегрирующее звено описывается уравнением

$$T \cdot \frac{dy(t)}{dt} = K * x(t), \tag{4.3}$$

в изображениях

$$T \cdot s \cdot Y(s) = K \cdot X(s)$$

которому соответствует передаточная функция

$$W(s) = \frac{K}{T \cdot s}.$$

АФЧХ:

$$W(i \cdot \omega) = \frac{K}{i \cdot T \cdot \omega} = -i \cdot \frac{K}{T \cdot \omega};$$

$$U(\omega) = 0; \quad V(\omega) = -\frac{K}{T \cdot \omega};$$

Фазочастотная характеристика идеального интегрирующего звена:

$$\varphi(\omega) = \text{const} = -\pi/2$$

Весовая функция звена:

$$w(t) = L^{-1} \left[W(s) \cdot [1] \right] = L^{-1} \left[\frac{K}{T \cdot s} \cdot [1] \right] \rightarrow W(t) = \frac{K}{T} \cdot 1(t)$$

Переходная функция звена:

$$h(t) = L^{-1} \left[\frac{W(s)}{s} \cdot [1] \right] = L^{-1} \left[\frac{K}{T \cdot s^2} \cdot [1] \right] \rightarrow h(t) = \frac{K}{T} \cdot t$$

Отметим, что переходную функцию можно определить через решение уравнения (4.3) -

$$y(t) = y(0) + \frac{K}{T} \int_0^t x(\tau) d\tau$$

Используя это решение для единичного скачка (x(t) = 1 при $t \ge 0$) при нулевых начальных условиях (y(0) = 0), получаем линейно возрастающую переходную характеристику:

$$h(t) = \frac{K}{T} \cdot t$$
.

Характеристики интегрирующего звена $T \cdot \frac{dy(t)}{dt} = K * x(t)$.

Передаточная функция $W(s) = \frac{K}{T_s}$.

Весовая функция: $w(t) = \frac{K}{T} \cdot 1(t)$

Переходная функция звена $h(t) = k \cdot t \cdot 1(t)$

Амплитудно-частотная характеристика:

$$W(i \cdot \omega) = -i \cdot \frac{K}{T \cdot \omega};$$

$$U(\omega) = 0; \quad V(\omega) = -\frac{K}{T \cdot \omega};$$

Фазочастотная характеристика идеального интегрирующего звена:

$$\varphi(\omega) = \text{const} = -\pi/2$$

Примеры интегрирующего звена:

• ванна, в которую набирается вода. Входной сигнал — это поток воды через кран, выход системы — уровень воды в ванне. При поступлении

воды уровень растет, система «накапливает» (интегрирует) входной сигнал.

• Гидравлический демпфер (F – сила, действующая на поршень (входная величина); у – перемещение поршня (выходная величина). (https://studfile.net/preview/3580473/)

Пример интегрирующего и дифференцирующего звена на основе конденсатора

Один и тот же технический элемент, с точки зрения теории автоматического управления, может выступать качестве как интегрирующего, так и в качестве дифференцирующего звена.

В качестве примера интегрирующего звена можно рассмотреть конденсатор, где входным воздействием является ток, а выходным результатом является напряжение на клеммах конденсатора. Действительно, при малом токе и большой емкости конденсатора, в случае ступенчатого изменения тока с 0, мы получаем график напряжения, совпадающий по форме с переходной функцией интегрирующего звена.

Тот же самый конденсатор, при определенных параметрах сети, может выступать в качестве идеального дифференцирующего звена, если в качестве входного воздействия подавать напряжение, а в качестве результирующей величины использовать ток в цепи.

4.2.3. Апериодическое звено

Одно из самых часто встречающихся звеньев – апериодическое, которое описывается дифференциальным уравнением

$$T\frac{dy(t)}{dt} + y(t) = k * x(t)$$
(4.4)

и имеет передаточную функцию

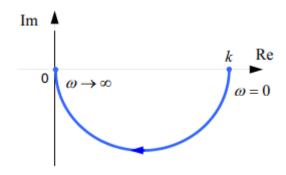
$$W(s) = \frac{k}{T_{s+1}} = \frac{k}{i \cdot \omega \cdot T + 1}.$$

 $W(s)=rac{k}{Ts+1}=rac{k}{i\cdot\omega\cdot T+1}.$ Здесь k- безразмерный коэффициент, а T>0- постоянная, которая называется постоянной времени звена. Постоянная времени – размерная величина, она измеряется в секундах и характеризует инерционность объекта, то есть скорость его реакции на изменение входного сигнала.

Частотная характеристика определяется выражением

$$W(i \cdot \omega) = \frac{k}{i \cdot \omega \cdot T + 1} = \frac{k \cdot (1 - i \cdot \omega \cdot T)}{T^2 \cdot \omega^2 + 1} = \frac{k}{T^2 \cdot \omega^2 + 1} - \frac{i \cdot k \cdot T \cdot \omega}{T^2 \cdot \omega^2 + 1}.$$

Для каждой частоты ω значение $W(i\cdot\omega)$ – это точка на комплексной плоскости. При изменении ω от 0 до ∞ получается кривая, которая называется годографом Найквиста (диаграммой Найквиста).



В данном случае можно показать, что частотная характеристика — это полуокружность с центром в точке $(0,5k;\ 0)$ радиуса 0,5k. Годограф начинается (на нулевой частоте) в точке $(k;\ 0)$ и заканчивается в начале координат (при $\omega \to \infty$).

Переходная функция для звена (4.4) –

$$h(t) = y(t) = k \left[1 - exp\left(-\frac{t}{T}\right) \right]$$

Импульсная характеристика -

$$w(t) = \frac{k}{T} exp\left(-\frac{t}{T}\right)$$

Если звено описывается уравнением (изменение знака перед у(t))

$$T\frac{dy(t)}{dt} - y(t) = k * x(t)$$
(4.4a)

то переходная и импульсная характеристики

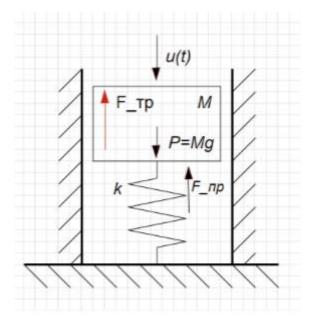
$$h(t) = k \left[exp\left(-\frac{t}{T}\right) - 1 \right]^{T}$$
 $w(t) = \frac{k}{T}exp\left(\frac{t}{T}\right)$

показывают, что звено становится неустойчивым. Действительно, обычно предполагается, что постоянная времени T>0, тогда экспоненты в этих выражениях бесконечно возрастают с ростом t. Поэтому звено названо «неустойчивым»: в покое оно находится в неустойчивом равновесии, а при малейшем возмущении «идет вразнос».

В качестве примера звена: двигатель любого типа (электрический, гидравлический, пневматический), генератор постоянного тока, нагревательная печь и т.д.

4.2.4. Апериодическое звено второго порядка

Рассмотрим апериодическое звено на примере модели механического демпфера. Механического демпфер - это поршень на пружине, он движется внутри цилиндра, может перемещается вверх-вниз. Его положение — это интересующая нас функция Y(t), сверху на него воздействует возмущающая сила (U(t)), на стенках поршня действует сила вязкого трения.



Согласно 2-му закону Ньютона ускорение тела пропорционально сумме сил, действующих на тело:

$$m \cdot \frac{d^2Y(t)}{dt^2} = \sum F_j = P + U(t) + F_{\pi p} + F_{\tau p}$$

где: m - масса поршня; Y(t) - положение поршня (выходная переменная); U(t) = X(t) - приложенная сила (входное воздействие); P - сила тяжести; $F_{\rm np} = k \cdot Y(t)$ - сила сопротивления пружины; $F_{\rm tp} = c \cdot \frac{dY}{dt}$ - сила вязкого трения (пропорциональная скорости движения поршня).

Считаем, что в нулевой момент времени поршень находится в равновесии. Тогда начальное положение поршня - y_0 в равновесии, где скорость и ускорения равны 0, можно посчитать из уравнения 2-го закона Ньютона.

Перепишем уравнение равновесия в отклонениях от нулевого состояния ($Y(t) = y_0 + y(t)$; $U(t) = u_0 + u(t)$). Поскольку мы приняли, что в начальный момент у нас состояние равновесия, а сумма трех сил в состоянии равновесия равна нулю, их можно убрать из уравнения, и в итоге получим уравнение динамики апериодического звена 2—го порядка:

$$T_2^2 \cdot y''(t) + T_1 \cdot y'(t) + y(t) = K \cdot x(t),$$
 (4.5)

где
$$T_2^2 = \frac{m}{k}$$
; $T_1 = \frac{c}{k}$; $K = \frac{1}{k}$. при этом: $D = T_1^2 - 4 \cdot T_2^2 \ge 0$.

Отметим, если D<0, то звено становится колебательным.

Переходя к изображениям $x(t) \rightarrow X(s)$; $y(t) \rightarrow Y(s)$ получаем уравнение динамики звена в изображениях:

$$(T_2^2 \cdot s^2(t) + T_1 \cdot s + 1) \cdot Y(t) = K \cdot X(s).$$

Передаточная функция звена может быть представлена в двух видах:

$$W(s) = \frac{Y(s)}{X(s)} = \frac{K}{T_2^2 \cdot s^2(t) + T_1 \cdot s + 1} < -\frac{K}{(T_3 \cdot s + 1)(T_4 \cdot s + 1)}$$

The:

$$T_3 = \frac{T_1 - \sqrt{D}}{2}; \quad T_4 = \frac{T_1 + \sqrt{D}}{2}; \quad D = T_1^2 - 4 \cdot T_2^2 >= 0$$

$$\frac{x(t)}{X(s)} = \frac{k}{T_2^2 s^2 + T_1 s + 1} = \frac{y(t)}{Y(s)}$$

$$\frac{x(t)}{X(s)} = \frac{k(1)}{T_3 s + 1} = \frac{1(k)}{T_4 s + 1} = \frac{y(t)}{Y(s)}$$

Рис.4 2.1. Апериодическое звено 2-го порядка (два варианта)

Амплитудно-фазовая частотная характеристика (АФЧХ):

$$W(i \cdot \omega) = W(s)|_{s=i \cdot \omega} = \frac{K}{(1 - T_2^2 \cdot \omega^2) + i \cdot T_1 \cdot \omega} < -\frac{K}{(1 + i \cdot T_3 \cdot \omega)(1 + i \cdot T_4 \cdot \omega)}$$

Домножив числитель и знаменатель на комплексно-сопряженные скобки $(1-i\cdot T_3\cdot\omega)$ и $(1-i\cdot T_4\cdot\omega)$, после преобразования получаем:

$$W(i \cdot \omega) = \frac{K \cdot (1 - T_4 \cdot T_3 \cdot \omega^2)}{(1 + T_3^2 \cdot \omega^2)(1 + T_4^2 \cdot \omega^2)} - i \cdot \frac{K(T_4 + T_3) \cdot \omega}{(1 + T_3^2 \cdot \omega^2)(1 + T_4^2 \cdot \omega^2)}$$

Действительная и мнимая части АФЧХ:

$$u(\omega) = \frac{K \cdot (1 - T_4 \cdot T_3 \cdot \omega^2)}{(1 + T_3^2 \cdot \omega^2)(1 + T_4^2 \cdot \omega^2)}$$

$$v(\omega) = -\frac{K(T_4 + T_3) \cdot \omega}{(1 + T_3^2 \cdot \omega^2)(1 + T_4^2 \cdot \omega^2)}$$

поведение $u(\omega)$ и $v(\omega)$ при $\omega -> 0$ и при $\omega -> \infty$ Анализируя получаем:

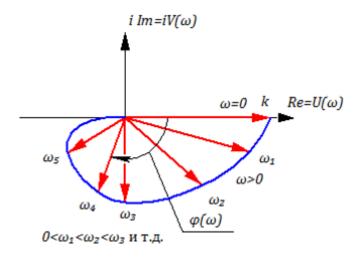
$$\lim_{\omega \to 0} u(\omega) = K; \qquad \lim_{\omega \to \infty} u(\omega) = 0;$$

$$\lim_{\omega \to 0} v(\omega) = 0; \qquad \lim_{\omega \to \infty} v(\omega) = 0;$$

Модуль АФЧХ (амплитуда), то есть $mod(W(i\cdot\omega)) = |W(i\cdot\omega)|$ -

$$A(\omega) = |W(i \cdot \omega)| = \frac{K}{\sqrt{1 + T_3^2 \cdot \omega^2} \cdot \sqrt{1 + T_4^2 \cdot \omega^2}}$$

Подставляя в формулы $u(\omega)$, $v(\omega)$ различные значения ω можно построить векторы, соответствующие различным значениям ω (годограф АФЧХ апериодического звена 2-го порядка):



Формула фазового сдвига:

$$\varphi(\omega) = -\pi \cdot j + arctg \frac{v(\omega)}{u(\omega)}$$

Переходная функция звена h(t) (реакция звена на воздействие единичного сигнала $\mathbf{1}(t)$)

$$h(t) = L^{-1}[H(s)] = L^{-1} \left[\frac{W(s)}{s} \right] = L^{-1} \left[\frac{K}{s \cdot (1 + T_3 \cdot s)(1 + T_4 \cdot s)} \right]$$

Для нахождения функции по формуле Хэвисайда, запишем корни полюса изображения, т.е. значения «s» при которых

$$D_0(s) = s \cdot (1 + T_3 \cdot s)(1 + T_4 \cdot s) = 0.$$
 Имеем $s_1 = 0$; $s_2 = -\frac{1}{T_3}$; $s_3 = -\frac{1}{T_4}$.

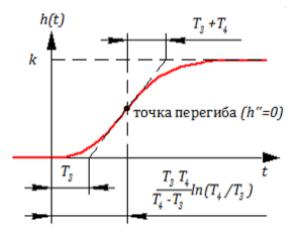
Тогда по формуле Хэвисайда:

$$f(t) = \lim_{s \to 0} [(s - 0) \cdot \frac{K}{s \cdot (1 + T_3 \cdot s)(1 + T_4 \cdot s)} \cdot e^{st}]$$

$$+ \lim_{s \to -\frac{1}{T_3}} [\left(s + \frac{1}{T_3}\right) \cdot \frac{K}{s \cdot (1 + T_3 \cdot s)(1 + T_4 \cdot s)} \cdot e^{st}]$$

$$+ \lim_{s \to -\frac{1}{T_4}} [\left(s + \frac{1}{T_4}\right) \cdot \frac{K}{s \cdot (1 + T_3 \cdot s)(1 + T_4 \cdot s)} \cdot e^{st}] \rightarrow$$

$$f(t) = K[1 + \frac{T_3}{T_4 - T_3} \cdot e^{-\frac{t}{T_3}} - \frac{T_4}{T_4 - T_3} \cdot e^{-\frac{t}{T_4}}]$$



Весовая функция получается дифференцированием w(t) = h'(t):

$$w(t) = \frac{K}{T_4 - T_3} \cdot \left[e^{-\frac{t}{T_4}} - e^{-\frac{t}{T_3}} \right]$$

Для справки - Формула Хэвисайда

Если $F(s) = \frac{D_1(s)}{D_0(s)}$, где $D_1(s)$ и $D_0(s)$ — полиномы по степеням «s», то:

$$f(t) = \sum_{j=1}^{n} \frac{1}{(k_j - 1)!} \cdot \lim_{s \to s_j} \frac{d^{k_{j-1}}}{ds^{k_{j-1}}} \cdot \left[\left(s - s_j \right)^{k_j} \cdot F(s) \cdot e^{st} \right]$$

где s_j — полюса изображения, т.е. те значения «s» при которых полином $D_0(s)$ обращается в ноль; k_j — кратность j — го полюса.

4.2.5. Колебательное звено

Рассмотрим колебательное звено на примере электрического колебательного контура. Электрическая цепь содержит источник напряжения и последовательно соединённые индуктивность, сопротивление, конденсатор.

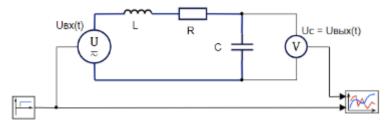


Рисунок 4.2.5.1. Электрический колебательный контур

Входное ступенчатое воздействие x(t), формирующее внешнюю Э.Д.С в цепи, подключено к блоку «источнику напряжения» $x(t) = U_{BX}(t)$.

Результирующий отклик звена - напряжение на конденсаторе y(t) $= U_c(t) = U_{\text{вых}}(t).$

Согласно второму закону Кирхгофа для замкнутого контура, сумма Э.Д.С равна сумме напряжения на резистивных элементах контура.

$$U_R + U_C = U_{\text{BX}} + \xi_L \rightarrow U_{\text{BX}} = -\xi_L + U_R + U_C.$$

 $U_R + U_C = U_{\rm BX} + \xi_L \Rightarrow U_{\rm BX} = -\xi_L + U_R + U_C.$ где $\xi_L = -L \cdot \frac{dI}{dt}$ - ЭДС индукции на катушке (направлено против изменения тока); $U_R = R \cdot I$ - падение напряжения на сопротивлении.

Сила тока в цепи равна изменению заряда конденсатора:

$$I = \frac{dq}{dt}, \ q = C \cdot \frac{dU_c}{dt}$$

Тогда сила тока в цепи I связана с напряжение на конденсаторе U_C соотношением:

$$L \cdot C \cdot \frac{d^2 U_c}{dt^2} + R \cdot C \cdot \frac{dU_c}{dt} + U_c = U_{\text{BX}}$$

Имеем уравнение колебательного звена (y(t) = U_c ; $x(t) = U_{\text{вх}}$)

$$T_2^2 \cdot y''(t) + T_1 \cdot y'(t) + y(t) = K \cdot x(t),$$
 (4.5)

В данном случае: $T_2^2 = L \cdot C$; $T_1 = R \cdot C$; K = 1.

Уравнение динамики звена описывается уравнением, аналогичным рассмотренному апериодическому звену второго порядка.

Причем
$$T_1 < T_2$$
, $D = T_1^2 - 4 \cdot T_2^2 \le 0$.

Учитывая, что D<=0, удобнее представить уравнение динамики в другой форме. Введем новые параметры: $T = T_2$ и $\beta = T_1/(2*T_2)$, где β параметр (коэффициент) затухания (демпфирования). Тогда уравнение колебательного звена имеет вид

$$T^2 \cdot y''(t) + 2 \cdot \beta \cdot T \cdot y'(t) + y(t) = K \cdot x(t), \tag{4.5}$$

Перейдем к изображениям: x(t) -> X(s) и y(t) -> Y(s) приходим к передаточной функции колебательного звена

$$W(s) = \frac{Y(s)}{X(s)} = \frac{K}{T^2 \cdot s^2(t) + 2 \cdot \beta \cdot T \cdot s + 1}$$

Еще раз подчеркием, что параметр (коэффициент) затухания $0 \le (\text{демпфирования}), 0 \le \beta \le 1, причем при <math>\beta > 1$ свойства колебательного звена совпадают c аналогичными свойствами соответствующего апериодического звена 2-го порядка, а при $\beta = 0$ звено выражается в консервативное, в котором могут существовать незатухающие гармонические колебания.

Выражение для $\mathbf{A}\Phi\mathbf{Y}\mathbf{X}$ получается после подстановки в выражение для передаточной функции $\mathbf{s}=\mathbf{i}\cdot\mathbf{\omega}$

$$W(i \cdot \omega) = \frac{K}{T^2 \cdot s(i \cdot \omega)^2 + 2 \cdot \beta \cdot T \cdot (i \cdot \omega) + 1} = \frac{K}{(1 - T^2 \cdot \omega^2) + 2 \cdot \beta \cdot T \cdot (i \cdot \omega)}$$

Домножим числитель и знаменатель на $(1-T^2\cdot\omega^2)-2\cdot\beta\cdot T\cdot(i\cdot\omega)$.

Выражения для вещественной и мнимой частей принимают вид:

$$u(\omega) = \frac{K \cdot (1 - T^2 \cdot \omega^2)}{(1 - T^2 \cdot \omega^2)^2 + 4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}$$

$$v(\omega) = \frac{-2 \cdot K \cdot \beta \cdot T \cdot \omega}{(1 - T^2 \cdot \omega^2)^2 + 4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}$$

Амплитуда АФЧХ:

$$A(\omega) = \sqrt{u(\omega)^{2} + v(\omega)^{2}} = \sqrt{\frac{K^{2} \cdot ((1 - T^{2} \cdot \omega^{2})^{2} + 4 \cdot (\beta \cdot T \cdot \omega)^{2}}{((1 - T^{2} \cdot \omega^{2})^{2} + 4 \cdot \beta^{2} \cdot T^{2} \cdot \omega^{2})^{2}}};$$

$$A(\omega) = \frac{K}{\sqrt{(1 - T^{2} \cdot \omega^{2})^{2} + 4 \cdot \beta^{2} \cdot T^{2} \cdot \omega^{2}}}$$

Сдвиг фазы:

$$\varphi(\omega) = \begin{cases} -arctg \frac{2 \cdot \beta \cdot T \cdot \omega}{1 - T^2 \cdot \omega^2}, & \text{при } \omega \leq \frac{1}{T} \\ -\pi - arctg \frac{2 \cdot \beta \cdot T \cdot \omega}{1 - T^2 \cdot \omega^2}, & \text{при } \omega > \frac{1}{T} \end{cases}$$

Предельные значения:

$$\omega \to 0 => \begin{cases} u(\omega) \to K; \\ v(\omega) \to 0; \\ A(\omega) \to K; \\ \varphi(\omega) \to 0; \end{cases} \qquad \omega \to \infty => \begin{cases} u(\omega) \to 0; \\ v(\omega) \to 0; \\ A(\omega) \to 0; \\ \varphi(\omega) \to -\pi; \end{cases}$$

Одной из главных особенностей $A\Phi YX$ является возможность существования экстремума в зависимости $A(\omega)$. Выполним исследование на экстремум:

$$\frac{dA(\omega)}{d\omega} = \frac{d}{d\omega} \left[\frac{K}{\sqrt{(1 - T^2 \cdot \omega^2)^2 + 4 \cdot \beta^2 \cdot T^2 \cdot \omega^2}} \right] = 0$$

Отсюда выражение для экстремума:

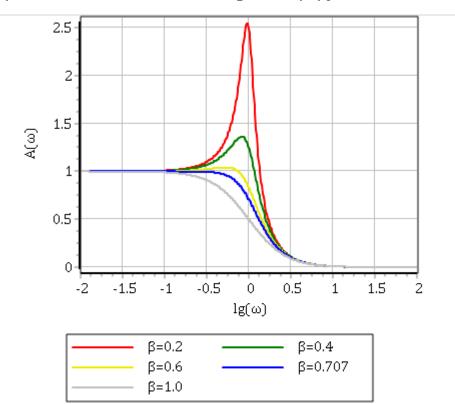
$$\omega_m = \frac{1}{T} \cdot \sqrt{1 - 2 \cdot \beta^2}$$

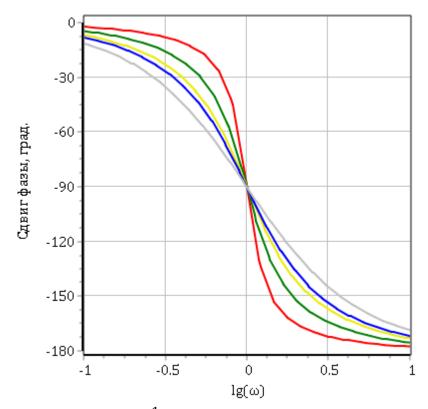
Если $\beta < \frac{\sqrt{2}}{2}$ зависимость $A(\omega)$ имеет экстремум

$$A(\omega_m) = \frac{K}{2 \cdot \beta \cdot \sqrt{1 - \beta^2}}$$

Анализ вышеприведенных соотношений показывает, что при $\beta < \frac{\sqrt{2}}{2}$ график $A(\omega)$ имеет горб, который при уменьшении β растет.

Частоту $\omega_{\rm M}$ будем отождествлять с тем значением частоты входного гармонического воздействия, при которой имеет место максимальное значение амплитуды выходного сигнала. Поскольку $\beta = \frac{T_1}{T_2}$, то очевидна роль постоянных времени : T_2 - 'раскачивает' колебания, а $-T_1$ 'демпфирует' их.

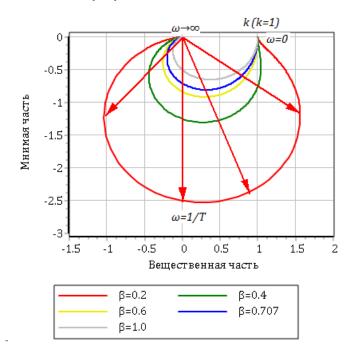


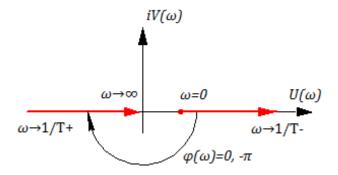


Частота $\omega = \frac{1}{T}$ называется частотой свободных колебаний и обозначается ω_0 . Колебательное звено, в котором $\beta = 0$ вырождается в консервативное. В данном звене при ступенчатом воздействии устанавливаются незатухающие колебания. Выражение экстремума для такого звена:

$$\omega_m = \frac{1}{T} \cdot \sqrt{1 - 2 \cdot \beta^2} = \frac{1}{T}$$

Годограф АФЧХ на комплексной плоскости:





Переходная функция звена h(t)

$$h(t) = L^{-1}[H(s)] = L^{-1} \left[\frac{W(s)}{s} \right] = L^{-1} \left[\frac{K}{s \cdot (T^2 \cdot s^2 + 2 \cdot \beta \cdot T \cdot s + 1)} \right] = >$$

$$h(t) = \frac{K}{T^2} \cdot L^{-1} \left[\frac{1}{s \cdot (s^2 + \frac{2 \cdot \beta}{T} \cdot s + \frac{1}{T^2})} \right]$$

Для вычисления переходной функции воспользуемся формулой Хэвисайда.

Для справки - Формула Хэвисайда

Если $F(s) = \frac{D_1(s)}{D_0(s)}$, где $D_1(s)$ и $D_0(s)$ — полиномы по степеням «s», то:

$$f(t) = \sum_{j=1}^{\infty} \frac{1}{(k_j - 1)!} \cdot \lim_{s \to s_j} \frac{d^{k_{j-1}}}{ds^{k_{j-1}}} \cdot \left[\left(s - s_j \right)^{k_j} \cdot F(s) \cdot e^{st} \right]$$

где s_j — полюса изображения, т.е. те значения «s» при которых полином $D_0(s)$ обращается в ноль; k_j — кратность j — го полюса.

Найдем полюса
$$s \cdot \left(s^2 + \frac{2 \cdot \beta}{T} \cdot s + \frac{1}{T^2}\right) = 0 ==>$$
 $s_1 = 0;$ $s_2 = -\frac{\beta}{T} + i \cdot \frac{1}{T} \cdot \sqrt{1 - \beta^2}$ $s_3 = -\frac{\beta}{T} - i \cdot \frac{1}{T} \cdot \sqrt{1 - \beta^2}$

По формуле Хэвисайда для переходной функции, имеем:

$$h(t) = \frac{K}{T^2} \cdot \sum_{j=1}^{K} \lim_{s \to s_j} \left[\frac{\left(s - s_j\right)}{s \cdot \left(s^2 + \frac{2 \cdot \beta}{T} \cdot s + \frac{1}{T^2}\right)} \cdot e^{st} \right]$$
(4.6)

Для полюса $s_1 = 0$, имеем:

$$\lim_{s\to 0} \left[\frac{(s-0)}{s\cdot (s^2 + \frac{2\cdot \beta}{T}\cdot s + \frac{1}{T^2})} \cdot e^{st} \right] = T^2$$

Ведем новые переменные m, n и выразим s_2 s_3 через новые переменные:

$$m = -\frac{\beta}{T}, \quad n = \frac{1}{T} \cdot \sqrt{1 - \beta^2} \implies s_2 = m + i \cdot n; \quad s_3 = m - i \cdot n;$$

$$s^{2} + \frac{2 \cdot \beta}{T} \cdot s + \frac{1}{T^{2}} = (s - s_{2}) \cdot (s - s_{3})$$

Тогда для второго предела -

$$\lim_{s \to s_2} \left[\frac{(s - s_2)}{s \cdot (s - s_2) \cdot (s - s_3)} \cdot e^{st} \right] = \frac{1}{(m + i \cdot n) \cdot 2 \cdot i \cdot n} \cdot e^{m \cdot t} \cdot e^{i \cdot n \cdot t} = \rightarrow$$

Домножая числитель и знаменатель на $(m-i\cdot n)\cdot i$, для второго предела имеем

$$-\frac{n+m\cdot i}{(m^2+n^2)\cdot 2\cdot n}\cdot e^{m\cdot t}\cdot e^{i\cdot n\cdot t}.$$

Аналогично, для третьего предела, имеем -

$$\lim_{s \to s_3} \left[\frac{(s - s_3)}{s \cdot (s - s_2) \cdot (s - s_3)} \cdot e^{st} \right] = \frac{-n + m \cdot i}{(m^2 + n^2) \cdot 2 \cdot n} \cdot e^{m \cdot t} \cdot e^{-i \cdot n \cdot t}$$

Складывая второе и третье слагаемое:

$$\sum_{2}^{3} = -\frac{e^{m \cdot t}}{(m^{2} + n^{2}) \cdot 2 \cdot n} \cdot \left[\left(n \cdot \left(e^{i \cdot n \cdot t} + e^{-i \cdot n \cdot t} \right) + i \cdot m \cdot \left(e^{i \cdot n \cdot t} - e^{-i \cdot n \cdot t} \right) \right] =$$

$$= -\frac{e^{m \cdot t}}{(m^{2} + n^{2}) \cdot n} \cdot \left[\left(n \cdot \cos(n \cdot t) - m \cdot \sin(n \cdot t) \right) \right] =$$

$$-\frac{e^{m \cdot t}}{(m^{2} + n^{2})} \cdot \left[\left(\cos(n \cdot t) - \frac{m}{n} \cdot \sin(n \cdot t) \right) \right]$$

Учитывая, что

$$m=-rac{eta}{T}\,,\quad n=rac{1}{T}\cdot\sqrt{1-eta^2}$$
 имеем
$$(m^2+n^2)=rac{eta^2}{T^2}+rac{1-eta^2}{T^2}=rac{1}{T^2}\;;\quad rac{m}{n}=-rac{eta}{T}\cdotrac{T}{\sqrt{1-eta^2}}$$

Для переходной функции (4.6) -

$$h(t) = \frac{K}{T^2} \cdot \left[T^2 - T^2 \cdot e^{m \cdot t} \cdot \left(\cos(n \cdot t) + \frac{\beta}{T} \cdot \frac{T}{\sqrt{1 - \beta^2}} \cdot \sin(n \cdot t) \right) \right] =$$

$$= K \cdot \left[1 - e^{-\frac{\beta}{T} \cdot t} \cdot \left(\cos\left(\frac{1}{T} \cdot \sqrt{1 - \beta^2} \cdot t\right) + \frac{\beta}{\sqrt{1 - \beta^2}} \cdot \sin\left(\frac{1}{T} \cdot \sqrt{1 - \beta^2} \cdot t\right) \right]$$

Введем новую переменную - частоту собственных колебаний:

$$\omega_{\rm c} = \frac{1}{T} \sqrt{1 - \beta^2} \,, \quad 0 < \beta < 1.$$

Таким образом, в описании колебательного звена появилось три "новых" частоты $\omega_0 < \omega_m < \omega_c$:

 ω_0 – частота свободных колебаний;

 ω_m – частота, соответствующая максимальной амплитуде;

 ω_0 – частота собственных колебаний.

Рассмотрим предельные случаи для $\beta = 1$, $\beta = 0$.

Если
$$\beta \to 0$$
, то $\omega_c \to \omega_0 = \frac{1}{T}$:

$$h(t) = K \cdot \left[1 - e^{0 \cdot t} \cdot \left(\cos\left(\frac{t}{T}\right) + 0 \cdot \sin\left(\frac{t}{T}\right)\right)\right] = K[1 - \cos\left(\frac{t}{T}\right)]. - t$$

переходная функция консервативного звена.

Если $\beta \to 1$, то $\omega_{\rm c} \to 0$ собственных колебаний в звене нет

$$h(t) = K \cdot \left[1 - e^{-\frac{t}{T}} \cdot \left(1 + \frac{t}{T}\right)\right]$$

В качестве примеров звена можно привести: двигатель постоянного тока при учете электромеханической и электромагнитной постоянных времени, электромашинный усилитель и т.п.