Моделирование динамических систем

Анализ динамических процессов

Во многих случаях объект исследования записывается в виде задачи Коши для обыкновенных дифференциальных уравнений. Некоторые методы численного решения задачи Коши представлены в разделе: Задачи 6 (Решение задачи Коши) части Методы моделирования (Примеры решения задач). В разделе представлены алгоритмы, программы и результаты исследования. При численном решении дифференциальные уравнения заменяются разностными. Частично рассматриваются вопросы устойчивости, точности и сходимости. Решение полученных разностных уравнений может оказаться неустойчивым, хотя исходная система обыкновенных дифференциальных уравнений была устойчивой.

В данном разделе для анализа динамических процессов будет использоваться среда SimInTech. Материалы по описанию среды SimInTech широко представлены в Интернете. Некоторые сведения присутствуют в разделе «Рекомендуемые источники».

Задача № 1 (радиоактивный распад)

Радиоактивный распад описывается уравнением

$$y' = -ky$$

Сколько вещества останется в момент времени t = 100, если k = 0.01, а в начальный момент времени y(t=0) = 100 г.

Сравнить результат с аналитическим решением y = 100*exp(-kt).

(Отметим, что решение задачи на языках программирования, представлено в разделе «Методы моделирования»).

Решение в SimInTech -

Представим решение задачи радиоактивного распада с использованием среды динамического моделирования технических систем SimInTech.

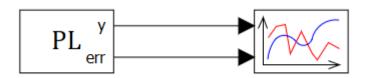
Скрипт проекта (проект в схеме модели общего вида) -

// Решение задачи радиоактивного распада y' = -ky initialization

var k = 0.01, // Постоянная радиоакт. распада грамм/с

```
t_{\rm fin}=100.0, //Конечное время моделирования, с y0=100.0; //Начальное значение массы (при t=0 ), грамм end;
```

Проект в схеме модели общего вида (Слой «Автоматика»)-



Блок PL на языке программирования (язык программирования библиотеки «Динамические») -

```
// Задача радиоактивного распада init z=y0; output y, err; // y - решение, err - отклонение от аналитического решения // Аналитическое решение function yy_of(t: double):double yy_of = y0*exp(-k*t); end; \\ z' = -k*z \\ if goodstep then begin y = z; err = yy_of(time) - y; end; \\
```

Вкладка «Параметры расчета»

араметры расчёта Управление расчётом Настройки проекта			
Название	Имя	Формула	Значение
Основные параметры			
Минимальный шаг	hmin		0.0001
— Максимальный шаг	hmax		0.0001
— Шаг синхронизации задачи в пакете	synstep		0
Режим выполнения задачи в пакете	serial_mode		Параллельнь
Начальный шаг интегрирования (если 0 - выбирается автоматически)	startstep		0
— Метод интегрирования	intmet		Эйлера
Начальное время расчёта	starttime		0
Конечное время расчёта	endtime	t_fin	100
Относительная ошибка	relerr		0.0001
– Абсолютная ошибка	abserr		1E-6
Относительная ошибка сравнения времени для дискретных блоков и источников	time_rel_error		1E-12
Начальное значение неинициализированных выходов блоков	InitOutputsValue		0
🗎 Генерация кода			
Управление расчётом			
Настройки решения НАУ			
🕀 Визуализация данных			
Удалённая отладка кода			
🕀 Сортировка блоков			
Тонкие настройки решения СЛАУ			
Э Тонкие настройки решения НАУ			
Электрические схемы			

□ Редактировать список параметров

Результаты моделирования –

Задача № 2 Объект с изменяемой массой (модель реактивного двигателя)

Тело с начальной массой $m=200~\rm k\Gamma$ ускоряется постоянной силой в $F=200~\rm hьютонов$. Масса тела уменьшается на $dm=1~\rm k\Gamma/cek$. Сила сопротивления воздуха Fb пропорциональна скорости тела Fb = K*V с коэффициентом пропорциональности $K=2~\rm h*cek/m$.

Найти скорость тела через 50 сек, если в момент времени t=0 тело находилось в покое.

Замечание к Решению -

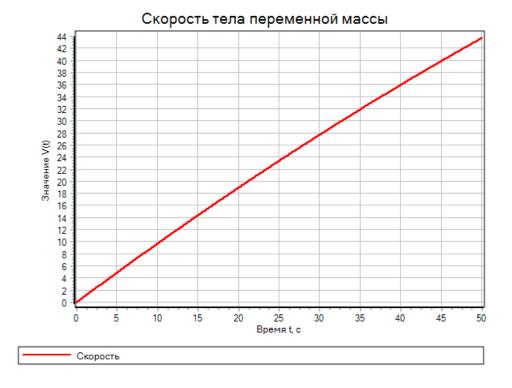
Дифференциальное уравнение записывается в виде –

$$\frac{dV}{dt} = \frac{1}{m - dm * t} * (F - K * V),$$

Граничное условие V(t=0) = 0.

Представить решение в SimInTech.

Для контроля: Результаты моделирования в SimInTech.



Задача № 3

Материальная точка массой m на подвесе длиной L – математический маятник.

Моделировать движение маятника если начальный угол отклонения от вертикальной оси Q = 3.1415/4 (Как известно, период математического маятника

$$T=2*\pi\sqrt{\frac{L}{g}}$$
 , где g- ускорение свободного падения).

Замечания к Решению:

Если Q - угол отклонения нити (подвеса) от положения равновесия, то уравнение имеет вид:

$$\frac{d^2Q}{dt^2} = -\frac{g}{L}Q$$

Представим исходное уравнение в виде системы двух уравнений первого порядка -

$$\frac{d}{dt} \frac{Q}{dt} = Z,$$

$$\frac{d}{dt} \frac{Z}{dt} = -\frac{g}{L}Q$$

и проинтегрируем их совместно.

Представить решение в рамках SimInTech. Для контроля - Результаты моделирования в рамках SimInTech.



Задача № 4

Рассмотрим простую экосистему, состоящую из кроликов, для которых имеется неограниченный запас пищи, и лис, которые для пропитания охотятся за кроликами. Простейшая математическая модель системы (модель Вольтерра) представляется в виде:

$$\frac{dr}{dt} = 2r - \alpha * rf, \qquad r(0) = r_0,$$

$$\frac{df}{dt} = -f + \alpha * rf, \qquad f(0) = f_0.$$

где t – время; r=r(t) – число кроликов; f=f(t) – число лис; $\alpha=const>0$.

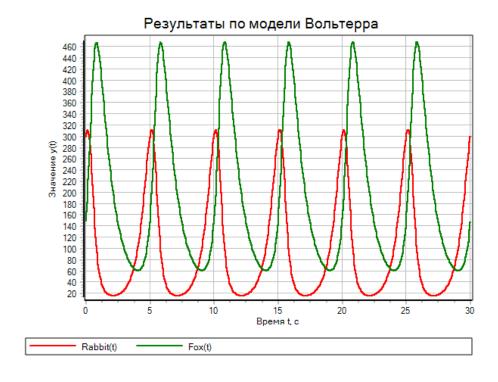
При $\alpha > 0$ лисы встречают кроликов с вероятностью, пропорциональной произведению числа тех и других.

Исследуйте поведение этой системы для $\alpha = 0.01$ и различных значений r_0 и f_0 т. нескольких единиц до нескольких тысяч:

a)
$$r_0 = 300$$
, $f_0 = 150$,

б)
$$r_0 = 15$$
, $f_0 = 22$.

Представить результаты моделирования по модели Вольтера в *SimInTech*. Для контроля: - Результаты моделирования в *SimInTech*.



Задача № 5

Исследовать на устойчивость решение задачи Коши –

$$\dot{y} \equiv \frac{dy}{dt} = 50 * (e^{-t} - y)$$
 $y(t = 0) = 1$

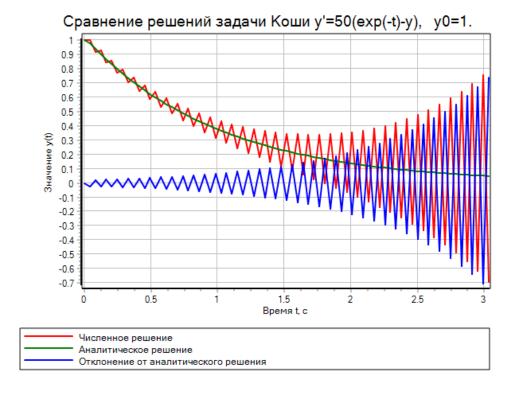
Неустойчивость проявляется как катастрофический рост ошибки численного решения при увеличении размера шага.

Аналитическое решение задачи –

$$y = \frac{50.0 * e^{-t} - e^{-50 * t}}{49}.$$

Представить исследование на устойчивость задачи Коши в SimInTech при двух значениях шага разностной сетки h= 0.039 и h= 0.041.

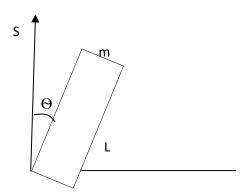
При шаге интегрирования h= 0.041 решение –



То есть численное решение теряет устойчивость при изменении шага сетки с 0.039 до 0.041. Обычно для конкретной задачи и конкретного метода существует некоторое граничное значение шага h_{max} , превышение которого приводит к неустойчивости численного решения.

Задача № 6

Посредством электромотора вынуждаются быстрые колебания поддерживающего шарика перевернутого маятника в вертикальном направлении: $S = Acos(\omega * t)$.



Подготовить программу для моделирования движения перевернутого маятника. С помощью программы исследовать движение маятника при следующих значениях параметров системы L, A, ω и начальных значениях Θ (0), Θ (0):

Таблица 1.

L, (м)	А, (м)	ω, (рад/сек)	Ө (0), (рад)	$\Theta(0)$,
				(рад/сек)
0,25	0	0	3,1	0
0,25	0,012	5,3	3,1	0
0,25	0,25	100	3,1	0
0,25	0,25	100	0,1	0
0,25	0,05	100	0,1	0
0,25	0,012	200	0,05	0

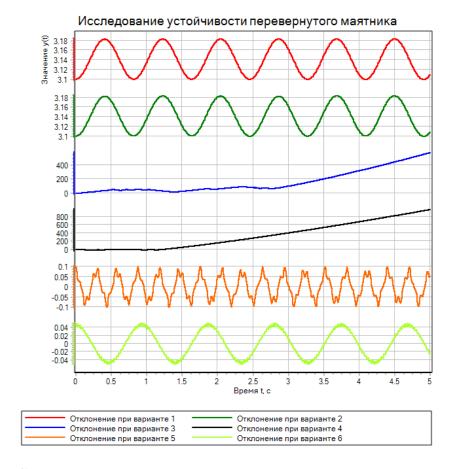
Замечание:

Применение второго закона Ньютона дает уравнение движения:

$$\ddot{\theta} = \frac{3}{2*L}*(g - A*\omega^2\cos(\omega t))\sin\theta,$$

где g — ускорение силы тяжести. Для малых значений Θ (sin $\Theta \approx \Theta$) уравнение превращается в уравнение Матье, которое устойчиво для некоторых значений A, ω и начальных условий. Движение перевернутого маятника будет устойчиво лишь в определенной области.

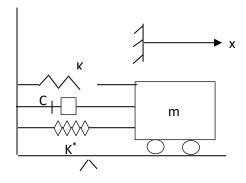
Получить решение в виде представленных графиков –



Сделать заключение: какие варианты начальных условий и параметров, представленных в таблице 1, приводят к устойчивым решениям. Проверку выполнить средствами SimInTech.

Задача №7

Устройство, показанное на рисунке, состоит из массы m, связанной с жесткой стенкой через пружину постоянной жесткости K, демпфер с коэффициентом демпфирования C и пружиной с нелинейной характеристикой, создающей восстанавливающую силу, равную произведению постоянной K^* на смещение в третьей степени.



Подготовить программу для моделирования движения механической системы в интервале времени $0 \le t \le 1$ сек. Параметры системы имеют

следующие значения: $K = 2.0 \, ^{\text{H}}/_{\text{CM}}, \, K^* = 0.2 \, ^{\text{H}}/_{\text{CM}}^3, \, C = 0.15^{^{\text{H*C}}/_{\text{CM}}}, \, m = 1.0 \, \text{кг}$ = $0.01^{^{\text{H*C}^2}/_{\text{CM}}}$. Начальные условия заданы в виде: $x \, (0) = 10 \, \text{cm}, \, \vec{x} \, (0) = 0$.

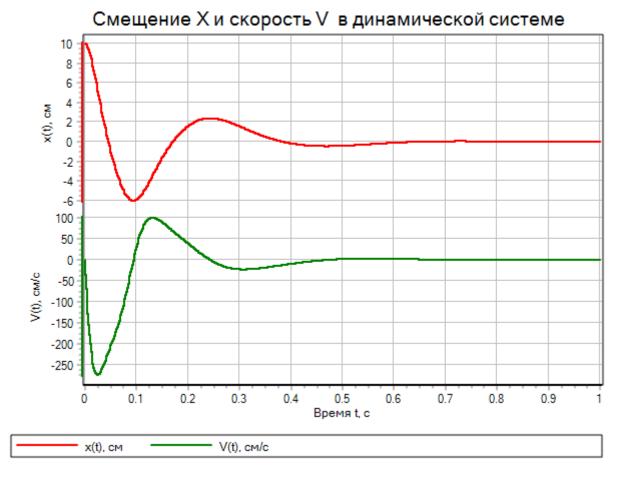
Замечание.

Движение системы описывается дифференциальным уравнением $m\ddot{x} + c\dot{x} + Kx + K^*x^3 = 0$.

Сведем дифференциальное уравнение второго порядка к двум дифференциальным уравнениям первого порядка. В результате получим

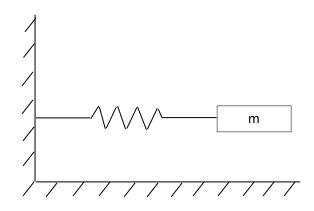
$$\dot{x} = V$$
 $x(0) = 10$
 $\dot{V} = -\frac{c}{m}V - \frac{K}{m}x - \frac{K^*x^3}{m}$ $V(0) = 0$

Подготовить программу моделирования и сравнить с результатами, представленными ниже -



Задача № 8

Тело движется по плоской поверхности с трением, обуславливающим демпфирование колебаний. Его масса m=45кг, жесткость пружин K=175 н/м, коэффициент трения f=0,3. Положим, что сила трения пропорциональна скорости тела. Рассчитать движение тела в интервале времени $0 \le t \le 20$ сек при начальных условиях: x(0)=7,5см, x(0)=0. Результаты представить графически.



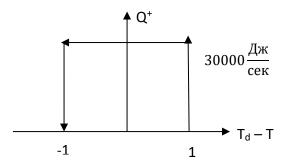
Задача №9

Система отопления некоторого объекта описывается уравнением

$$Q^+ - Q^- = 250 \, dT / dt$$

где Q^+ - подвод тепла от нагревателя, Q^- - потери тепла в окружающую среду,

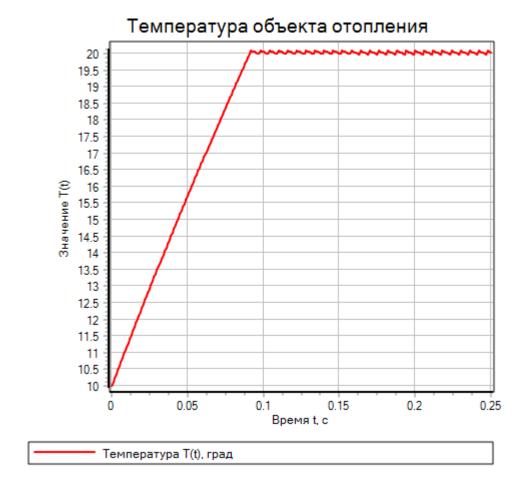
T — температура объекта.



Объект оборудован датчиком, который включает и выключает нагреватели в зависимости от разницы температуры объекта T и заданной температуры T_d так, чтобы разница составляла не более одного градуса. Включение нагревателя соответствует графику, представленному на рисунке.

Пусть $Q^-=500~T$, заданная температура $T_d=20\,^{\circ}\mathrm{C}$, а начальная температура объекта $T_0=10\,^{\circ}\mathrm{C}$.

Методами математического моделирования исследовать систему отопления объекта. В частности, средствами SimInTech получить динамику изменения температуры объекта -



Данный график показывает, что математически правильное решение с точки зрения управления технической системой (системой отопления объекта), является некорректным, так как приводит «дребезгу» управляющего устройства (реле) исполнительного механизма И (нагревательного элемента). Обычно в технических системах отопления объекта используют регуляторы релейного типа. Явление «дребезга» возникает в системах автоматического управления при пренебрежении ТАУиР (теории автоматического управления и регулирования).

Вернемся к решению этой задачи позднее.